Search in Rotated Sorted Array
Search in Rotated Sorted Array:
There is an integer array nums sorted in ascending order (with distinct values).
Prior to being passed to your function, nums is possibly rotated at an unknown pivot index k (1 <= k < nums.length) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]] (0-indexed). For example, [0,1,2,4,5,6,7] might be rotated at pivot index 3 and become [4,5,6,7,0,1,2].
Given the array nums after the possible rotation and an integer target, return the index of target if it is in nums, or -1 if it is not in nums.
You must write an algorithm with O(log n) runtime complexity.
Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
Example 3:
Input: nums = [1], target = 0
Output: -1
Constraints:
1 <= nums.length <= 5000-10^4 <= nums[i] <= 10^4- All values of nums are unique.
numsis an ascending array that is possibly rotated.-10^4 <= target <= 10^4
Try this Problem on your own or check similar problems:
Solution:
- Java
- JavaScript
- Python
- C++
public int search(int[] nums, int target) {
int start = 0, end = nums.length-1;
while(start <= end){
int mid = start + (end - start) / 2;
if(nums[mid] == target) return mid;
if(nums[mid] > target){
if(nums[mid] >= nums[start] && nums[start] > target){
start = mid + 1;
}else{
end = mid - 1;
}
}else{
if(nums[mid] <= nums[end] && nums[end] < target){
end = mid - 1;
}else{
start = mid + 1;
}
}
}
return -1;
}
/**
* @param {number[]} nums
* @param {number} target
* @return {number}
*/
var search = function (nums, target) {
let start = 0;
let end = nums.length - 1;
while (start <= end) {
let mid = Math.floor(start + (end - start) / 2);
if (nums[mid] === target) {
return mid;
}
if (nums[mid] > target) {
if (nums[mid] >= nums[start] && nums[start] > target) {
start = mid + 1;
} else {
end = mid - 1;
}
} else {
if (nums[mid] <= nums[end] && nums[end] < target) {
end = mid - 1;
} else {
start = mid + 1;
}
}
}
return -1;
};
class Solution:
def search(self, nums: List[int], target: int) -> int:
start = 0
end = len(nums) - 1
while start <= end:
mid = start + (end - start) // 2
if nums[mid] == target:
return mid
if nums[mid] > target:
if nums[mid] >= nums[start] and nums[start] > target:
start = mid + 1
else:
end = mid - 1
else:
if nums[mid] <= nums[end] and nums[end] < target:
end = mid - 1
else:
start = mid + 1
return -1
class Solution {
public:
int search(vector<int>& nums, int target) {
int start = 0;
int end = nums.size() - 1;
while (start <= end) {
int mid = start + (end - start) / 2;
if (nums[mid] == target) {
return mid;
}
if (nums[mid] > target) {
if (nums[mid] >= nums[start] && nums[start] > target) {
start = mid + 1;
} else {
end = mid - 1;
}
} else {
if (nums[mid] <= nums[end] && nums[end] < target) {
end = mid - 1;
} else {
start = mid + 1;
}
}
}
return -1;
}
};
Time/Space Complexity:
- Time Complexity: O(logn)
- Space Complexity: O(1)
Explanation:
Modified binary search which we break down into three steps:
- First we check if the number at
midis thetargetand return it as the result - If it's not we first check if the element at
midis larger than our target and we break down this case further in two subcases:
start..midis sorted sequencenums[mid] >= nums[start], and ifnums[start] > targetthat means all numbers in the left part are larger thantargetso we have to search in the right partstart = mid + 1- Otherwise we know the left is rotated and we have to search in it (
mid..endis sorted, but we know our target is smaller thanmidand we can skip the whole right side)
- If element at
midis smaller than thetargetagain we have two subcases:
mid..endis sorted sequencenums[mid] <= nums[end]andtargetis larger than the element atendthat means it's larger than all elements on the right side so search for the element in left sideend = mid - 1- Otherwise we know right is rotated and we have to search in that half (
start..midis sorted and we knowtargetis larger than element atmid, so it is larger than every element on the left side and we can discard it)
If we don't find the target we return -1.